In-memory, ephemeral vector store.

Setup: Install langchain:

npm install langchain
Instantiate
import { MemoryVectorStore } from 'langchain/vectorstores/memory';
// Or other embeddings
import { OpenAIEmbeddings } from '@langchain/openai';

const embeddings = new OpenAIEmbeddings({
model: "text-embedding-3-small",
});

const vectorStore = new MemoryVectorStore(embeddings);

Add documents
import type { Document } from '@langchain/core/documents';

const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
const document3 = { pageContent: "i will be deleted :(", metadata: {} };

const documents: Document[] = [document1, document2, document3];

await vectorStore.addDocuments(documents);

Similarity search
const results = await vectorStore.similaritySearch("thud", 1);
for (const doc of results) {
console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * thud [{"baz":"bar"}]

Similarity search with filter
const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });

for (const doc of resultsWithFilter) {
console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * foo [{"baz":"bar"}]

Similarity search with score
const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
for (const [doc, score] of resultsWithScore) {
console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]

As a retriever
const retriever = vectorStore.asRetriever({
searchType: "mmr", // Leave blank for standard similarity search
k: 1,
});
const resultAsRetriever = await retriever.invoke("thud");
console.log(resultAsRetriever);

// Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]

Hierarchy

  • VectorStore
    • MemoryVectorStore

Constructors

Properties

FilterType: ((doc: Document<Record<string, any>>) => boolean)
embeddings: EmbeddingsInterface
memoryVectors: MemoryVector[] = []
similarity: ((a: number[], b: number[]) => number)

Type declaration

    • (a, b): number
    • Returns the average of cosine distances between vectors a and b

      Parameters

      • a: number[]

        first vector

      • b: number[]

        second vector

      Returns number

Methods

  • Method to add documents to the memory vector store. It extracts the text from each document, generates embeddings for them, and adds the resulting vectors to the store.

    Parameters

    • documents: Document<Record<string, any>>[]

      Array of Document instances to be added to the store.

    Returns Promise<void>

    Promise that resolves when all documents have been added.

  • Method to add vectors to the memory vector store. It creates MemoryVector instances for each vector and document pair and adds them to the store.

    Parameters

    • vectors: number[][]

      Array of vectors to be added to the store.

    • documents: Document<Record<string, any>>[]

      Array of Document instances corresponding to the vectors.

    Returns Promise<void>

    Promise that resolves when all vectors have been added.

  • Parameters

    • OptionalkOrFields: number | Partial<VectorStoreRetrieverInput<MemoryVectorStore>>
    • Optionalfilter: ((doc: Document<Record<string, any>>) => boolean)
        • (doc): boolean
        • Parameters

          • doc: Document<Record<string, any>>

          Returns boolean

    • Optionalcallbacks: Callbacks
    • Optionaltags: string[]
    • Optionalmetadata: Record<string, unknown>
    • Optionalverbose: boolean

    Returns VectorStoreRetriever<MemoryVectorStore>

  • Parameters

    • Optional_params: Record<string, any>

    Returns Promise<void>

  • Return documents selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to the query AND diversity among selected documents.

    Parameters

    • query: string

      Text to look up documents similar to.

    • options: MaxMarginalRelevanceSearchOptions<((doc: Document<Record<string, any>>) => boolean)>

    Returns Promise<DocumentInterface<Record<string, any>>[]>

    • List of documents selected by maximal marginal relevance.
  • Parameters

    • query: string
    • Optionalk: number
    • Optionalfilter: ((doc: Document<Record<string, any>>) => boolean)
        • (doc): boolean
        • Parameters

          • doc: Document<Record<string, any>>

          Returns boolean

    • Optional_callbacks: Callbacks

    Returns Promise<DocumentInterface<Record<string, any>>[]>

  • Method to perform a similarity search in the memory vector store. It calculates the similarity between the query vector and each vector in the store, sorts the results by similarity, and returns the top k results along with their scores.

    Parameters

    • query: number[]

      Query vector to compare against the vectors in the store.

    • k: number

      Number of top results to return.

    • Optionalfilter: ((doc: Document<Record<string, any>>) => boolean)

      Optional filter function to apply to the vectors before performing the search.

        • (doc): boolean
        • Parameters

          • doc: Document<Record<string, any>>

          Returns boolean

    Returns Promise<[Document<Record<string, any>>, number][]>

    Promise that resolves with an array of tuples, each containing a Document and its similarity score.

  • Parameters

    • query: string
    • Optionalk: number
    • Optionalfilter: ((doc: Document<Record<string, any>>) => boolean)
        • (doc): boolean
        • Parameters

          • doc: Document<Record<string, any>>

          Returns boolean

    • Optional_callbacks: Callbacks

    Returns Promise<[DocumentInterface<Record<string, any>>, number][]>

  • Returns Serialized

  • Static method to create a MemoryVectorStore instance from an array of Document instances. It adds the documents to the store.

    Parameters

    • docs: Document<Record<string, any>>[]

      Array of Document instances to be added to the store.

    • embeddings: EmbeddingsInterface

      Embeddings instance used to generate embeddings for the documents.

    • OptionaldbConfig: MemoryVectorStoreArgs

      Optional MemoryVectorStoreArgs to configure the MemoryVectorStore instance.

    Returns Promise<MemoryVectorStore>

    Promise that resolves with a new MemoryVectorStore instance.

  • Static method to create a MemoryVectorStore instance from an existing index. It creates a new MemoryVectorStore instance without adding any documents or vectors.

    Parameters

    • embeddings: EmbeddingsInterface

      Embeddings instance used to generate embeddings for the documents.

    • OptionaldbConfig: MemoryVectorStoreArgs

      Optional MemoryVectorStoreArgs to configure the MemoryVectorStore instance.

    Returns Promise<MemoryVectorStore>

    Promise that resolves with a new MemoryVectorStore instance.

  • Static method to create a MemoryVectorStore instance from an array of texts. It creates a Document for each text and metadata pair, and adds them to the store.

    Parameters

    • texts: string[]

      Array of texts to be added to the store.

    • metadatas: object | object[]

      Array or single object of metadata corresponding to the texts.

    • embeddings: EmbeddingsInterface

      Embeddings instance used to generate embeddings for the texts.

    • OptionaldbConfig: MemoryVectorStoreArgs

      Optional MemoryVectorStoreArgs to configure the MemoryVectorStore instance.

    Returns Promise<MemoryVectorStore>

    Promise that resolves with a new MemoryVectorStore instance.