Supabase vector store integration.

Setup: Install @langchain/community and @supabase/supabase-js.

npm install @langchain/community @supabase/supabase-js

See https://js.langchain.com/v0.2/docs/integrations/vectorstores/supabase for instructions on how to set up your Supabase instance.

Instantiate
import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase";
import { OpenAIEmbeddings } from "@langchain/openai";

import { createClient } from "@supabase/supabase-js";

const embeddings = new OpenAIEmbeddings({
model: "text-embedding-3-small",
});

const supabaseClient = createClient(
process.env.SUPABASE_URL,
process.env.SUPABASE_PRIVATE_KEY
);

const vectorStore = new SupabaseVectorStore(embeddings, {
client: supabaseClient,
tableName: "documents",
queryName: "match_documents",
});

Add documents
import type { Document } from '@langchain/core/documents';

const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
const document3 = { pageContent: "i will be deleted :(", metadata: {} };

const documents: Document[] = [document1, document2, document3];
const ids = ["1", "2", "3"];
await vectorStore.addDocuments(documents, { ids });

Delete documents
await vectorStore.delete({ ids: ["3"] });

Similarity search
const results = await vectorStore.similaritySearch("thud", 1);
for (const doc of results) {
console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * thud [{"baz":"bar"}]

Similarity search with filter
const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });

for (const doc of resultsWithFilter) {
console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * foo [{"baz":"bar"}]

Similarity search with score
const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
for (const [doc, score] of resultsWithScore) {
console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]

As a retriever
const retriever = vectorStore.asRetriever({
searchType: "mmr", // Leave blank for standard similarity search
k: 1,
});
const resultAsRetriever = await retriever.invoke("thud");
console.log(resultAsRetriever);

// Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]

Hierarchy

  • VectorStore
    • SupabaseVectorStore

Constructors

Properties

client: SupabaseClient<any, "public", any>
embeddings: EmbeddingsInterface
queryName: string
tableName: string
upsertBatchSize: number = 500

Methods

  • Adds documents to the vector store.

    Parameters

    • documents: Document<Record<string, any>>[]

      The documents to add.

    • Optionaloptions: {
          ids?: string[] | number[];
      }

      Optional parameters for adding the documents.

      • Optionalids?: string[] | number[]

    Returns Promise<string[]>

    A promise that resolves when the documents have been added.

  • Adds vectors to the vector store.

    Parameters

    • vectors: number[][]

      The vectors to add.

    • documents: Document<Record<string, any>>[]

      The documents associated with the vectors.

    • Optionaloptions: {
          ids?: string[] | number[];
      }

      Optional parameters for adding the vectors.

      • Optionalids?: string[] | number[]

    Returns Promise<string[]>

    A promise that resolves with the IDs of the added vectors when the vectors have been added.

  • Parameters

    Returns VectorStoreRetriever<SupabaseVectorStore>

  • Deletes vectors from the vector store.

    Parameters

    • params: {
          ids: string[] | number[];
      }

      The parameters for deleting vectors.

      • ids: string[] | number[]

    Returns Promise<void>

    A promise that resolves when the vectors have been deleted.

  • Return documents selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to the query AND diversity among selected documents.

    Parameters

    Returns Promise<Document<Record<string, any>>[]>

    • List of documents selected by maximal marginal relevance.
  • Parameters

    Returns Promise<DocumentInterface<Record<string, any>>[]>

  • Performs a similarity search on the vector store.

    Parameters

    Returns Promise<[Document<Record<string, any>>, number][]>

    A promise that resolves with the search results when the search is complete.

  • Parameters

    Returns Promise<[DocumentInterface<Record<string, any>>, number][]>

  • Returns Serialized

  • Creates a new SupabaseVectorStore instance from an array of documents.

    Parameters

    • docs: Document<Record<string, any>>[]

      The documents to create the instance from.

    • embeddings: EmbeddingsInterface

      The embeddings to use.

    • dbConfig: SupabaseLibArgs

      The configuration for the Supabase database.

    Returns Promise<SupabaseVectorStore>

    A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.

  • Creates a new SupabaseVectorStore instance from an array of texts.

    Parameters

    • texts: string[]

      The texts to create documents from.

    • metadatas: object | object[]

      The metadata for the documents.

    • embeddings: EmbeddingsInterface

      The embeddings to use.

    • dbConfig: SupabaseLibArgs

      The configuration for the Supabase database.

    Returns Promise<SupabaseVectorStore>

    A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.