Optional
fields: ChatVertexAIInputConvert a runnable to a tool. Return a new instance of RunnableToolLike
which contains the runnable, name, description and schema.
Optional
description?: stringThe description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.
Optional
name?: stringThe name of the tool. If not provided, it will default to the name of the runnable.
The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.
An instance of RunnableToolLike
which is a runnable that can be used as a tool.
Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.
Array of inputs to each batch call.
Optional
options: Partial<GoogleAIBaseLanguageModelCallOptions> | Partial<GoogleAIBaseLanguageModelCallOptions>[]Either a single call options object to apply to each batch call or an array for each call.
Optional
batchOptions: RunnableBatchOptions & { An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set
Optional
options: Partial<GoogleAIBaseLanguageModelCallOptions> | Partial<GoogleAIBaseLanguageModelCallOptions>[]Optional
batchOptions: RunnableBatchOptions & { Optional
options: Partial<GoogleAIBaseLanguageModelCallOptions> | Partial<GoogleAIBaseLanguageModelCallOptions>[]Optional
batchOptions: RunnableBatchOptionsBind arguments to a Runnable, returning a new Runnable.
A new RunnableBinding that, when invoked, will apply the bound args.
Bind tool-like objects to this chat model.
A list of tool definitions to bind to this chat model. Can be a structured tool, an OpenAI formatted tool, or an object matching the provider's specific tool schema.
Optional
kwargs: Partial<GoogleAIBaseLanguageModelCallOptions>Any additional parameters to bind.
Invokes the chat model with a single input.
The input for the language model.
Optional
options: GoogleAIBaseLanguageModelCallOptionsThe call options.
A Promise that resolves to a BaseMessageChunk.
Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.
A runnable, function, or object whose values are functions or runnables.
A new runnable sequence.
Stream output in chunks.
Optional
options: Partial<GoogleAIBaseLanguageModelCallOptions>A readable stream that is also an iterable.
Generate a stream of events emitted by the internal steps of the runnable.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event
: string - Event names are of the format: on_[runnable_type]_(start|stream|end).name
: string - The name of the runnable that generated the event.run_id
: string - Randomly generated ID associated with the given execution of
the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.tags
: string[] - The tags of the runnable that generated the event.metadata
: Record<string, any> - The metadata of the runnable that generated the event.data
: Record<string, any>Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| event | name | chunk | input | output |
+======================+==================+=================================+===============================================+=================================================+
| on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_start | [model name] | | {'input': 'hello'} | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_stream | [model name] | 'Hello' | | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_end | [model name] | | 'Hello human!' | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_start | some_runnable | | | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_stream | some_runnable | "hello world!, goodbye world!" | | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_end | some_runnable | | [Document(...)] | "hello world!, goodbye world!" |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_start | some_tool | | {"x": 1, "y": "2"} | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_end | some_tool | | | {"x": 1, "y": "2"} |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_start | [retriever name] | | {"query": "hello"} | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_start | [template_name] | | {"question": "hello"} | |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.
In addition to the standard events above, users can also dispatch custom events.
Custom events will be only be surfaced with in the v2
version of the API!
A custom event has following format:
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| Attribute | Type | Description |
+===========+======+===========================================================================================================+
| name | str | A user defined name for the event. |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
Here's an example:
import { RunnableLambda } from "@langchain/core/runnables";
import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
// Use this import for web environments that don't support "async_hooks"
// and manually pass config to child runs.
// import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";
const slowThing = RunnableLambda.from(async (someInput: string) => {
// Placeholder for some slow operation
await new Promise((resolve) => setTimeout(resolve, 100));
await dispatchCustomEvent("progress_event", {
message: "Finished step 1 of 2",
});
await new Promise((resolve) => setTimeout(resolve, 100));
return "Done";
});
const eventStream = await slowThing.streamEvents("hello world", {
version: "v2",
});
for await (const event of eventStream) {
if (event.event === "on_custom_event") {
console.log(event);
}
}
Optional
streamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">Optional
streamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
Optional
options: Partial<GoogleAIBaseLanguageModelCallOptions>Optional
streamOptions: Omit<LogStreamCallbackHandlerInput, "autoClose">Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
Bind config to a Runnable, returning a new Runnable.
New configuration parameters to attach to the new runnable.
A new RunnableBinding with a config matching what's passed.
Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.
A new RunnableWithFallbacks.
Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.
The object containing the callback functions.
Optional
onCalled after the runnable finishes running, with the Run object.
Optional
config: RunnableConfig<Record<string, any>>Optional
onCalled if the runnable throws an error, with the Run object.
Optional
config: RunnableConfig<Record<string, any>>Optional
onCalled before the runnable starts running, with the Run object.
Optional
config: RunnableConfig<Record<string, any>>Add retry logic to an existing runnable.
Optional
fields: { Optional
onOptional
stopA new RunnableRetry that, when invoked, will retry according to the parameters.
Integration with Google Vertex AI chat models in web environments.
Setup: Install
@langchain/google-vertexai-web
and set your stringified Vertex AI credentials as an environment variable namedGOOGLE_VERTEX_AI_WEB_CREDENTIALS
.Constructor args
Runtime args
Runtime args can be passed as the second argument to any of the base runnable methods
.invoke
..stream
,.batch
, etc. They can also be passed via.bind
, or the second arg in.bindTools
, like shown in the examples below:Examples
Instantiate
Invoking
Streaming Chunks
Aggregate Streamed Chunks
Bind tools
Structured Output
Usage Metadata
Stream Usage Metadata